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ABSTRACT 

An integrated tool developed for the construction of 
unstructured numerical grids about complex 
configurations is presented.  The tool is highly 
integrated and employs the native underlying geometry 
modeling kernel used to define the target domain for 
providing topological and geometric access used by the 
grid generation procedures.   This access greatly 
reduces the overall process time required to generate 
grids for complex models.  In addition, the tool is based 
on an underlying framework that enables the integration 
of new grid generation technology as it becomes 
available.  The GridEx package presented herein is 
under development at the NASA Langley Research 
Center as part of the Fast Adaptive Aerospace Tools 
initiative. 

INTRODUCTION 

The Fast Adaptive Aerospace Tools (FAAST) initiative 
at the NASA Langley Research Center is targeted at 
developing fast adaptive methods for the analysis and 
design of complex aerospace configurations in all speed 
regimes1.  One of the major components of this process 
is the initial grid generation for complex configurations 
and the adaptation of those grids to specified global 
error tolerances.  Key to the automation of the grid 
generation and adaptation procedures is the use of 
unstructured grid generation techniques and the 
incorporation of Computer Aided Design (CAD) 
models. 

At the core of the FAAST research is the goal of 
streamlining the overall numerical simulation process.  
Unstructured grid generation techniques provide a 
means of generating high quality discretizations for 
complex domains in a nearly automated fashion2-5.  In 
addition, unstructured grids facilitate localized 

refinement, coarsening, and topology changes such as 
those resulting from solution based adaptation.  With 
these advantages in mind, development of highly 
automated grid generation and adaptation tools tends to 
focus on unstructured techniques.  However, 
unstructured techniques alone are not sufficient to 
optimize the overall analysis process. 

With the ever increasing desire to expand the role of 
numerical simulation in the overall production process, 
it is necessary to leverage the existing tools and 
capabilities used in other areas during the design of a 
new product.  The use of production CAD models as 
the basis for the simulation is one such technique.  As 
the targets of simulation become increasingly more 
complex, lower fidelity descriptions no longer suffice.  
With increasing complexity comes the growing desire 
to reuse the CAD descriptions created during other 
phases of production.  It is therefore desirable to link 
the grid generation and solution based adaptation 
directly to the subject CAD model.  It is typical to 
exchange CAD data via standardized file formats such 
as the Initial Graphics Exchange Specification (IGES) 
or the Standard for the Exchange of Product Model 
Data (STEP).  However, it must be realized that often 
the CAD model has been designed for manufacture 
rather than for analysis.  For example, some geometric 
features, irrelevant to the analysis stage, may need to be 
suppressed or eliminated from the model.  
Unfortunately, this potential need for adjustment to the 
model makes standardized data exchange mechanisms 
less desirable.  Instead it is most beneficial to interface 
directly to the originating modeling kernel used to 
construct the subject part.  The latter method also 
provides the ability to leverage the model design intent 
(master model access, feature suppression, etc.).  In 
practice however, NASA must contend with a variety 
of diverse commercial CAD systems as part of its 
technology assessment and problem solving role and 
therefore cannot tailor its analysis capability to a given 
system.  We require compatibility internally within 
NASA as well as with our partners in industry and 
academia.  Vendor independent access to numerical 
geometry is therefore a requirement for the tools and 
techniques developed as part of the current work. 
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Though the field of unstructured grid generation has 
produced a number of tools capable of creating high 
quality grids for complex configurations, the field is far 
from mature.  As such, one of the design goals for the 
current work was to allow for the extension of the 
resulting application to track technological advances in 
the field.  To satisfy this goal, an Application 
Programming Interface (API) for unstructured grid 
generation was developed as the basis for the GridEx 
package6.  The API provides a generic software 
interface to relevant geometry, grid metric, and 
meshing component routines.  The use of the API 
serves to insulate the application from the specific 
algorithmic details.  Therefore, the implementation of a 
given software interface can be modified to 
accommodate technological improvements without 
impacting the overall application.  In addition, multiple 
implementations for the interfaces can be supplied to 
the application offering the ability to do side-by-side 
comparisons of different algorithms, and combinations 
thereof, within a given session. 

What follows is a description of the development and 
operation of GridEx along with examples of 
unstructured grids suitable for use in high Reynolds 
number viscous Computational Fluid Dynamics (CFD) 
simulations. 

DESIGN AND DEVELOPMENT 

The design of the GridEx application was centered on 
usability and extensibility.  The package is a product of 
the FAAST element of the Airframe Systems Concept 
to Test (ASCoT) and 3rd Generation Reusable Launch 
Vehicles (RLV) programs of the NASA Langley 
Research Center.  One of the key components to the 
FAAST effort is the rapid generation and adaptation10 
of numerical grids directly from CAD models.  The grid 
generation and adaptation capabilities are required to be 
independent of the originating CAD system, thereby 
providing support across the multitude of available 
systems.  In addition, the capabilities must be 
implemented in a manner which facilitates the infusion 
of new techniques that result from FAAST research 
efforts. 

To meet these needs, the GridEx application is based on 
a framework that is implemented by a suite of libraries 
tailored to the field of numerical mesh generation.  The 
framework is also used to tag the entities of the CAD 
model with application and analysis specific 
information.  As such, the grid is inherently associated 
to the defining geometry from the point of creation.  
Downstream processes in the analysis have the 

advantage of this association when they access the 
geometry or the tagging data.  The result is a history of 
the analysis that is centered on the geometry model of 
interest.  For example, a mesh adaptation package can 
obtain not only the original grid, but also the underlying 
geometry to which it is associated.  Node movement or 
the addition of new nodes required by the adaptation 
can be accurately computed using the actual geometry.  
Similarly, the geometry can be tagged with the adapted 
mesh for later use.  The framework also utilizes an 
unstructured grid generation API providing the ability 
to seamlessly incorporate enhancements in unstructured 
meshing techniques for tailored use by the FAAST 
team.  The API facilitates the inclusion of emerging 
technological advances in unstructured methods over 
the life of the FAAST effort and beyond. 

The unstructured grid generation API is defined with a 
set of functions specific to the task at hand.  These 
include the discretization of 1-dimensional edge, 2-
dimensional face, and 3-dimensional volume entities.  
The API also provides a generic method of determining 
spacing constraints to be imposed on the resulting 
mesh.  This method provides three principal spacing 
values and directions for any location in the 
computational domain.  Also, included in the API are 
logistical functions to provide: a unique identifier for 
the implementing algorithm; capabilities of the 
algorithm (edge, face, volume, etc.); and the ability to 
communicate meshing progress metrics.  Listing the 
capabilities of an implementation provides the 
opportunity to satisfy by other means any functionality 
not provided by the given algorithm.  If an algorithm 
only supports a portion of the API, only that portion 
need be implemented and the capabilities list is reported 
accordingly.  Implementation of missing capability will 
be provided by other supporting algorithms if possible.  
Access to the geometrical information of the target 
model is also provided by an API which will be 
discussed in a subsequent section. 

The API definition is currently restricted to triangular 
surface and tetrahedral volume mesh generation. 
However, the definition is independent of any specific 
algorithm and may be implemented in any manner 
consistent with the functional definition.  For example, 
the meshing functions may be implemented with 
Delaunay or advancing front techniques; the spacing 
constraints may come from a background grid/source 
analogy, from analytic functions, or from some solution 
derived quantity.  Regardless of the implementation, 
data is exchanged through the API making possible the 
transparent substitution of data construction methods. 
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The implementation of the unstructured grid generation 
API functions used by GridEx is provided via Dynamic 
Shared Objects (DSOs) alternatively referred to as a 
Dynamically Linked Libraries (DLLs).  One or more 
DSOs can be loaded at execution providing runtime 
customization of the capabilities made available to the 
user by the GridEx package.  The user controls the list 
of available shared objects via an environment variable 
that is processed at runtime and used to load and assess 
the specified libraries.  As part of the assessment 
process, the Graphical User Interface (GUI) is 
dynamically updated and the DSO list is traversed in 
order to resolve any missing capabilities.  If the selected 
DSO lacks a particular capability, the first object that 
provides the missing functionality is used to resolve it.  
An example would be a DSO that implements an 
algorithm that only provides a volume meshing 
capability.  In this case when the lacking DSO is 
selected, the list is traversed to locate, from the 
remaining DSOs, an object that provides edge and face 
meshing.  That implementation is then used as the 
default algorithm for edge and face meshing when and 
if needed by the “volume only” algorithm.  Similarly, 
the first available implementation is used as a default 
for missing DSOs when restarting a session.  In the 
latter case, if a previous session depended on a DSO not 
currently loaded, the “default” is used and an 
appropriate warning is posted to the user. 

UG_MeshTriFace(v,f,n,x,u,nb,b,ns,s,m,ne,e,c,p) 

int v – Target region 

int f – Target face entity 

int n – Number of fixed nodes 

double  *x - Fixed node coords 

double  *u - Fixed node parameters 

int nb - Number of boundary segs 

int *b - Oriented Boundary segs 

int ns - Number of Interior segs 

int *s - Interior segments 

int *m – Number of computed nodes 

double *ne – Num of computed elements 

int **e – Output element defs 

double **c – Output physical coords 

double **p – Output parametric cords 

Purpose: Triangulation of a face entity 

UG_MeshTetVolume(v,n,x,l,t,nf,f,ns,s,m,ne,e,c) 

int v – Target region 

int n – Number of fixed nodes 

double *x - Fixed node coords 

int *l - Number of shell elements 

int **t - Shell elements 

int nf - Number of interior faces 

int *f - Interior triangular faces 

int ns - Number of interior segs 

int *s - Interior segments 

int *m – Number of computed nodes 

double *ne – Num of computed elements  The API definition is detailed in Reference 6, but is 
included here for completeness.  It should be noted that 
the implementations of the API used by GridEx are 
assumed to be written in the C programming language.  
Therefore, all of the descriptions to follow assume the 
C language.  In practice it is possible to support existing 
algorithm implementations written in other languages 
such as FORTRAN77 and FORTRAN90.  This is 
accomplished by assembling a DSO consisting of C 
implementations of the API which call routines written 
in other languages.  This places the burden of mixed 
language programming on the DSO developer, but 
keeps the calling sequence consistent for GridEx.  The 
unstructured grid API follows as: 

double **e – Output element defs 

double **c – Output physical cords 

Purpose: Volume tetrahedralization 

UG_GetSpacing(x,y,z,s,dir) 

double *x – Target X coordinate 

double *y – Target Y coordinate 

double *z – Target Z coordinate 

double s[3] – Edge lengths 

double dir[9] – Principal directions 

Purpose: Determine spacing constraints given a 

target location in the domain 

Note: Arguments representing the target coordinate for 
UG_GetSpacing() are passed by reference to facilitate a 
call from FORTRAN code. 

UG_MeshEdge(v,e,b,u,m,c,p) 

int v – Target region 

int e – Target edge entity 

double b[3] - Bounding points Unless otherwise stated, all functions return an integer 
value of 0 on success and 1 on failure.  All arrays are 
1-dimensional.  Coordinate arrays are ordered such that 
the stride of the array is the space dimension (i.e. for a 
Cartesian array, ordering is x1, y1, z1, x2, y2, z2, ..., xn, 
yn, zn).  Likewise, element arrays are listed with a stride 

double u[2] – Bounding parameters 

int  *m – Number of computed nodes 

double *c – Output physical coords 

double *p – Output parametric coords 

Purpose: Discretize an edge entity 
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GEOMETRY ACCESS equal to the number of nodes (i.e. triangle array n1,1, 
n1,2, n1,3, n2,1, n2,2, n2,3, ..., nn,1, nn,2, nn,3).  Allocation of 
arrays is handled by the API implementation and it is 
expected that GridEx can freely release these memory 
resources as necessary. 

The current work employs the Computational Analysis 
Programming Interface (CAPrI)7,8 as the basis for 
geometry access.  CAPrI is a CAD-vendor neutral API 
providing the reduced set of solid modeling operations 
common to computational analysis.  It accesses 
computational solid geometry related information 
directly from the kernel of the originating CAD system.  
The CAPrI API offers a layer of abstraction from the 
specific methods of a given CAD kernel’s API while 
ultimately utilizing the original system used to create 
the subject geometry.  Applications derived from 
CAPrI, however, are shielded by the API from the 
specifics of the underlying modeling kernel.  They 
automatically may employ any of the of supported 
CAD systems without modification of the application 
itself.  Support for additional modeling systems is 
provided to all derivative applications by the creation of 
a new CAPrI driver for the desired modeling kernel.  
This level of abstraction is in direct alignment with the 
development of the GridEx application.  The single 
GridEx source code will support, transparent to the 
user, any and all of the CAD kernels supported by the 
CAPrI API.  The development of new CAPrI drivers 
will allow GridEx to effortlessly track the changes, 
enhancements, and developments of the CAD industry. 

The following functions must be implemented to 
provide logistical information about the DSO.  Each 
DSO is assigned a unique identity represented as an 
integer.  DSO developers are encouraged, but not 
required, to verify the uniqueness of their respective 
identity with the GridEx developers.  While failure to 
do so may prevent interoperability with other DSOs, it 
will not prevent the use of a DSO within GridEx.  
Failure to provide a unique identity however could 
potentially encounter collisions with other production 
and development DSOs.  Such collisions may or may 
not affect development and should be noted by DSO 
developers.   

int UG_Identity(void) 

Returns an unique integer Id of the 

algorithm/DSO 

int UG_WhatProvides(void) 

Returns an packed integer that details 

the functionality provided by the DSO 

The CAPrI API provides operations that are common 
across the supported systems and provides for 
interrogation, data tagging, and the creation of solid 
primitives.  Since it is actually implemented with the 
native modeling kernel of the subject part, CAPrI also 
provides access to the master model of the part 
allowing for feature suppression, parameter 
modification, regeneration, etc.  CAPrI operations are 
restricted to manifold solid geometry, such as that 
defined by most modern CAD systems, and as such 
provides a closed topological description of the domain 
of interest.  CAPrI also provides a closed tessellation9 
of the subject part that may be used to ensure physical 
consistency of the model.  Therefore, inherent in the 
design of CAPrI, all of the geometric and topological 
information required for intelligently automated 
unstructured grid generation is available for use by 
derivative applications. 

The progress function described earlier is provided by 
the GridEx package and may be used by an API 
implementation to transfer information to and from 
GridEx.  When called the API will supply a progress 
metric (percent complete) which will be displayed by 
the GridEx progress bar.  GridEx will return a value of 
zero if the caller should continue.  A returned value of 1 
signals an interrupt whereby the caller is expected to 
perform local clean up followed by an error return. 

int UG_Progress(metric) 

double *metric – Current progress metric 

Again, the argument is passed by reference to facilitate 
calls from FORTRAN routines. 

The above functions can be implemented and used to 
build custom DSOs by a GridEx user.  This allows the 
user a great deal of flexibility to expand upon the 
methods of operation provided by the standard GridEx 
distribution.  It also allows easy incorporation of 
technological breakthroughs into the production 
environment.  As opposed to a fixed procedure, GridEx 
provides a matrix of capabilities with combinations 
defined by the supporting DSOs selected at runtime.   

4 OF 10 
American Institute of Aeronautics and Astronautics Paper 2003-4129 

An additional layer of abstraction is used by the 
unstructured grid generation API to encapsulate the 
geometry operations such that they may be replaced or 
enhanced as directed by future needs.  One such change 
might be to support geometry-only definitions.  A 
primary example of such a definition is that of legacy 
IGES data.  This type of data would require 



combination with a separate description of the topology 
for use in automated grid generation and as such does 
not fit into the current design goals of the CAPrI API. 

CADGeom_NearestOnFace(v,f,po,uv,pt) 

int v – Target region 

int f – Target edge entity 

double *po - Target coordinates 

The following documents a portion of the abstraction 
layer to the CAPrI API.  Only the primary methods 
typically required by the methods of the unstructured 
grid generation API are included.  Input and Output of 
geometry as well as other topological and logistical 
operations are handled internally by GridEx and are not 
documented here for the sake of brevity. 

double *uv - In/Output Edge parameter 

double *pt – Output Edge coord 

Purpose: Snap a point to the Face 

CADGeom_NormalToFace(v,f,uv,pt,n) 

int v – Target region 

int f – Target face entity 

CADGeom_LengthOfEdge(v,e,ts,te,l) double *uv - Target parameters 

int v – Target region double *pt – Output coordinates 

int e – Target edge entity double *n – Output normal 

double ts - Starting parameter 

double te – Ending parameter Purpose: Determine normal of a Face 

double *l – Output length 

Coordinates are ordered X, Y, Z and surface parameters 
are ordered U, V.  Where applicable a flag is specified 
to control derivative calculation as follows: 0 – no 
derivative; 1 – first derivative; 2 – first, second, and 
mixed derivatives.  Snap methods require an initial 
parameter estimate as input. 

Purpose: Determine bounded length of Edge 

CADGeom_PointOnEdge(v,e,t,pt,d,d1,d2) 

int v – Target region 

int e – Target edge entity 

double t - Target parameter 

double *pt - Output coordinate DATA PERSISTENCE 
int d – Derivative flag 

double *d1 - Output 1st derivative Primarily, each function listed above is a simple 
wrapper of the equivalent CAPrI function.  However, 
the GridEx framework makes internal use of an 
application I/O mechanism provided by CAPrI to save 
analysis data in a “Geometry Centric” fashion. 

double *d2 – Output 2nd derivative 

Purpose: Evaluate a parameter on the Edge 

CADGeom_NearestOnEdge(v,e,po,t,pt) 

int v – Target region 

Currently CAPrI saves a separate file in addition to the 
native CAD part file.  This file contains auxiliary 
information needed by CAPrI.  The data is stored 
separately so as to prevent modification of the part that 
would hinder loading of that file back into the 
respective CAD system. 

int e – Target edge entity 

double *po - Target coordinate 

double *t - In/Output Edge parameter 

double *pt – Output Edge coord 

Purpose: Snap a point to the Edge 

CADGeom_PointOnFace(v,f,uv,pt,d,du1,dv1, 

 duv,du2,dv2) 

int v – Target region 

int f – Target face entity 

double *uv - Target UV parameters 

double *pt - Output coordinates 

int d – Derivative flag 

double *du1 - Output 1st U derivative 

double *dv1 - Output 1st V derivative 

double *duv - Output mixed derivative 

double *du2 - Output 2nd U derivative 

double *dv2 – Output 2nd V derivative 

Purpose: Evaluate a point on the Face 
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The CAPrI I/O mechanism provides the GridEx 
software developers the ability to augment the auxiliary 
file with application specific information.  Information 
local to a specific region is differentiated from 
information global to the application (i.e. all regions).  
A simple method of registering applications with CAPrI 
is supplemented with callback functions that are 
invoked by each CAPrI save operation.  With each 
invocation, the user supplied callback function is 
provided: the target region identifier; the target 
application name; and a file pointer to which the 
developer can safely write data.  For reading 
application data, a function is provided to return a file 
pointer that is positioned appropriately to read the 



specified application data.  The number of bytes written 
is also provided as a checksum.  A function is also 
available to return the number and names of the 
applications that have stored data within a given CAPrI 
auxiliary file.  It is the responsibility of GridEx to 
ensure the integrity of the read and write operations. 

The GridEx framework internally uses this mechanism 
to save application data for session restarts.  As a 
consequence, all data gathered and generated by GridEx 
is available to downstream applications.  This method 
of tagging the geometry with analysis data maintains a 
geometry based coupling between the various 
disciplines within the overall design/analysis process. 

GRIDEX OPERATION 

Within GridEx, the user may interactively: define the 
domain(s) of interest surrounding the subject geometry; 
impose grid metric constraints to govern the 
distribution of discrete grid points and the resulting 
element quality; individually or collectively generate 
surface grids for the constituent faces of the solid 
model; generate volume grids for the domain(s) of 
interest; and visualize the results.  Each phase of the 
grid generation procedure is organized on a task 
oriented tabbed form located on the GUI as shown in 
Figure 1.  The GUI also includes a 3D view of the 
problem space that can be manipulated interactively.  A 
model tree is provided for the hierarchical organization 
of the problem to include boundary condition definition 
for output to the analysis software.  Additional 
operational functionality is provided by means of a 
standard application menu bar. 

In addition to the API basis of the underlying 
framework used to construct GridEx, one of the unique 
characteristics of the tool is the interaction between grid 
metric constraint specification and grid generation.  The 
tool allows the user to specify grid metric constraints 
via the method of choice by setting appropriate 
parameters on the tabbed form.  At any time during the 
specification, the user may elect to view the localized 
impact of the constraints on one or more selected 
surface meshes. The inspection requires the grid to be 
generated for the subject face(s) and any of the 
respective component edges.  The grid generation is 
limited to those entities specified by the user and is thus 
very efficient.  This process however may result in 
inconsistencies in the surface grid as faces fall out of 
sync with their neighbors.   To allow for this iterative 
flexibility, a mechanism for automated consistency is 
built into the application via the support framework.  
The method is summarized as follows.  The framework 

maintains timestamps on the constraints and on each 
individual component grid (edge, face, and volume).  
As such the grids are aware of their state relative to the 
constraint specifications.  As a given face grid is 
generated, the constituent edges of the face are 
assembled into the bounding discretization.  This 
process includes a check of the current state of each 
edge relative to the metric constraints.  If an edge mesh 

is out of date, it is discretized with the current 
constraints before assembly.  This operation has the 
added benefit that edges common to multiple faces are 
only updated once. Likewise, prior to volume grid 
generation all component grids are verified against the 
current state of the constraints.  Component grids that 
are consistent with the constraints remain unchanged.  
Inconsistent component grids are automatically updated 
and assembled for use in the volume grid computation.  
This capability greatly reduces the time required to 
specify the desired metric constraints and provides 
flexibility and automatic consistency to the user. 

Figure 1 - GridEx Application 

The grid generation methods of GridEx are integrated 
into the tool through the aforementioned DSOs.  This 
allows the user to iterate through the metric 
specification process while obtaining visual feedback 
on the impact to the desired grid with respect to the 
changing constraints.  The integration results in 
additional time reduction for the overall process. 

 GridEx provides the ability to define separate grid 
metric specifications from multiple algorithms.  These 
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can then be individually used in conjunction with the 
available meshing algorithms to generate unstructured 
tetrahedral meshes directly from the CAD definition.  
The manifold solid model access provided by the 
CAPrI interface allows for automated topology 
extraction that is used to drive the grid generation 
procedure.  The user is responsible for specifying grid 
metric constraints prior to meshing and has the ability 
to iteratively generate grids on individual geometric 
entities while assessing the local impact of the 
constraints on the quality of the resulting mesh as stated 
above. 

GridEx currently supplies the user with grid metric 
constraints using the algorithms found in FELISA3 and 
VGRID11.  These algorithms may be used seamlessly 
and interchangeably between both the FELISA3 and 
VGRID2 surface meshing implementations that are 
currently provided as DSOs with distribution.  These 
methods can of course be augmented by user supplied 
DSOs.  Supplied meshing implementations only 
support isotropic surface grid generation however work 
is in progress to support anisotropic stretching of 
surface and volume elements.  Both meshing 
implementations have been refactored into a modular 
set of API conforming libraries for use within the 
framework.  The refactoring also included the use of the 
API to decouple the meshing algorithms from the 
underlying geometry and grid metric specification.  As 
a result the framework now provides the stated matrix 
of capabilities to the GridEx user.  The supplied surface 
meshing matrix is populated as shown in Table 1 and is 
expected to be expanded in the future to support 
additional techniques as required. 

Table 1 – Surface Grid Generation Capability 

In addition to the surface meshing matrix, volume 
meshing capabilities supplied add support for the 
AFLR34 viscous volume generator. 

Side-by-side comparison of results from multiple 
metric/meshing algorithms is available within the same 
GridEx session.  Visualization of grid data is provided 
in the interactive 3D window.  Grid inspection is aided 
via flooded contour plotting of predefined grid quality 
measures.  These contours can be viewed for any 

collection of boundary surfaces and/or “crinkle cuts” 
through the volume grid. 

 FELISA 
Spacing 

VGRID 
Spacing 

FELISA 
Mesh X X 

VGRID 
Mesh X X 

a) FELISA Mesh from FELISA Background Grid

b) VGRID Mesh from FELISA Background Grid

c) FELISA Mesh from VGRID Background Grid

d) VGRID Mesh from VGRID Background Grid

Figure 2 - Surface Grid Generation Capability 
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The API basis of the GridEx application facilitated the 
integration of AFLR3 resulting in a total time to 
integrate of less than 12 hours.  Modification consisted 
of creating an API conforming wrapper routine used to 
invoke the standalone AFLR3 executable.  The purpose 
of the wrapper was to: create a disk file defining the 
boundary elements obtained through the API along with 
the associated boundary conditions; generate a script to 
control AFLR3 execution, also as a disk file; invoke a 
system call to execute the script; and finally import of 
the AFLR3 volume grid from the disk file generated by 
the execution.  No refactoring of AFLR3 was possible 
for inclusion into the current work.  As such, use of the 
API for other algorithms, namely grid metric constraint 
calculation, could not be accommodated within AFLR3 
itself.  The definition of grid metric constraints for the 
volume grid is confined to that set by the AFLR3 
application.  The schemes available are based on 
interpolation, with various forms of decay, of the grid 
metrics derived from the initial boundary triangulation. 

Examples of the flexibility afforded the user by the 
supplied capabilities is demonstrated in Figure 2.  The 
figure uses surface grids on the nose of a hypersonic 
vehicle to represent each of the four scenarios supplied 
for surface grid generation within GridEx.  Figure 2a 
shows the result of a surface grid computed using the 
FELISA meshing algorithm and a traditional FELISA 
background grid.  Figure 2b shows the same geometry 
meshed with the VGRID surface meshing algorithm 
and same FELISA background grid.  The background 
grid used here consists of a line source that extends 
along the longitudinal axis of the vehicle and a single 
point source, centered in the clustered region of the 
figures.  The point source was added for the purpose of 
demonstration.  The point source was defined with a 
constant spacing distance 6 times that of the desired 
edge length defined for the source.  The edge length 
doubling distance was specified as 10 times the source 
edge length.  These parameters are detailed in the 
FELISA User’s Guide3.  Figures 2c and 2d show the 
same progression of meshing algorithm but with a 
VGRID background grid controlling grid clustering.  
Similarly, a line source is defined along the longitudinal 
axis and a point source is defined at the center of the 
clustered region.  The effect of the point source with the 
VGRID background grid decays smoothly with 
increasing distance based on a user specified intensity 
value.  Again, the details of the background grid 
definition are found in the literature11. 

Boundary triangulations for AFLR3 are generated using 
any of the available surface meshing techniques within 
GridEx and therefore are geometry conforming.  In 
general, no new surface nodes are introduced as part of 
the volume grid generation.  Element connectivity, 
however, may be altered as a result of local 
reconnection.  Surface element connectivity is updated 
as part of the volume grid import process.  However, 
viscous cell growth is allowed on planar symmetry 
surfaces.  For these faces, new nodes and connectivity 
will be generated and both must be updated as part of 
the import process. 

When comparing surface grids generated with different 
meshing algorithms but the same background grid in 
Figure 2, only subtle differences are noted.  This is 
reasonable as both grids adhere to the same metric 
constraints defined by the background grid.  However, 
it is possible that other cases may yield more drastic 
differences.  Fortunately, the decoupled unstructured 
grid generation API provides the flexibility to choose 
the appropriate combination best suited for a particular 
problem at little or no cost.  The reader is reminded 
that, as this figure demonstrates, future metric 
specification schemes can be added to the application 
with no impact to existing meshing algorithms. 

CUSTOMIZATION 

As stated above, the use of an unstructured grid 
generation API allows the user to customize GridEx 
operation through the development of meshing 
“plug-ins”.  This section serves to describe this process. 

In order to facilitate the construction of a user defined 
DSO, a C language header file with basic definitions is 
supplied as part of the standard GridEx distribution.  
This header file lists: the known algorithm identities; 
masks used for defining and evaluating algorithm 
capabilities; return code definitions; and the definition 
of the API interfaces listed above.  It is the DSO 
developer’s responsibility to implement the desired 
interface methods with the algorithm of interest. 

A recent enhancement of the GridEx application comes 
from access to the viscous volume grid generation 
capabilities of the AFLR3 software4.  AFLR3 is a 
standalone volume grid generation package based on 
the advancing front local reconnection algorithm and is 
capable of generating inviscid as well as viscous 
volume grids from an existing boundary triangulation.  
The tool has the ability to generate fully tetrahedral or 
mixed pentahedral boundary layer grids. 
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All DSO libraries used by GridEx must implement the 
UG_Identity() and the UG_WhatProvides() 
interfaces.  The UG_Identity() interface should 



simply return an integer representing the unique 
identity of the algorithm.  During development, the 
identity is somewhat arbitrary.  However, for proper 
interoperability with the supplied DSOs, it should not 
duplicate any of the “acknowledged” meshing libraries 
contained in the header file.  Also, as a best practice, 
the new identity should be communicated to the GridEx 
developers for inclusion as an “acknowledged” 
algorithm thereby avoiding any potential future 
conflicts with other DSOs.  To reiterate, it is not 
necessary to implement all phases of the meshing 
process with a given algorithm.  To provide a means of 
communicating the specific capabilities of the DSO to 
GridEx, UG_WhatProvides() returns a constant 
comprised of the bitwise combination of the capability 
masks supplied in the header.  This information will be 
used by GridEx to substitute the “default” algorithm for 
the missing functionality as described earlier. 

Figure 3 - Sample Geometry for use with AFLR3

The remaining responsibility of the DSO developer is to 
supply the desired functionality (as defined by the 
capabilities mask) by implementing the appropriate 
interface(s) followed by the building of a shared object 
library.  Use of other API functions is encouraged in 
order to provide the greatest flexibility to the user.  For 
example use of the UG_GetSpacing() interface is 
favored over a proprietary constraint mechanism in that 
it affords the user selection of any of the available 
constraint algorithms.  Likewise, the case is made for 
geometry access and even meshing of entities lower in 
the solid modeling hierarchy.  Details required to build 
the shared object library are operating system 
dependent and are therefore not covered here.  The 
reader is referred to the appropriate documentation for 
the target operating system for a description of that 
procedure. 

Inclusion of the newly created DSO is then conveyed to 
GridEx by setting an environment variable that defines 
which DSOs should be used by the GridEx session. 

EXAMPLES 

As a demonstration of GridEx capability we now 
consider the application of the tool to two complex test 
cases.  The first is that of the Langley Glide Back 
Booster (LGBB) shown in Figure 3.  Geometric 
complexities included in this model involve the struts 
used to connect the two vehicles as well as cavities 
along the wing trailing edge that represent gaps 
between flap surfaces.  An example AFLR3 viscous 
volume grid is shown in Figure 4.  The insets show the 
smooth transition from the semi-structured viscous 
layers to the inviscid region of the grid.  Not shown are 

the cavities representing the juncture of flap geometry.  
Similar grid quality was obtained in these regions.  The 
boundary triangulation generated for this example was 
created using the FELISA surface grid generator and a 
FELISA background grid.  The geometry was obtained 
in the form of a solid model from the Unigraphics 
commercial CAD system and processed using the 
associated CAPrI driver.  The computational domain 
was defined by a Boolean subtraction of the geometry 
from a “Box” solid primitive created within GridEx and 
assumed half plane symmetry.  This operation was 
carried out within GridEx.  The resulting model was 
defined topologically with 412 edge and 134 face 
entities. This topological information was automatically 
extracted during the grid generation procedure.  The 
entire process required less than 4 hours to complete 
following receipt of the geometry definition. 

Figure 4 – Sample Viscous Grid from AFLR3 
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Figure 5 shows geometry provided for the 2nd AIAA 
CFD Drag Prediction Workshop.  This geometry of the 
DLR-F6 transport configuration adds a pylon and 
nacelle to a generic wing/body geometry.  The initial 
surface mesh and inviscid volume grid were generated 
in just under 1 hour following initial receipt of the 
geometry in the form of an IGES file.  This IGES file 
was used to create a solid model to include the defining 
domain of interest using the Unigraphics CAD package 
and again processed with appropriate the CAPrI driver.  
Following the generation of the inviscid grid, an 
AFLR3 viscous grid was generated using the same 
surface triangulation requiring an additional 20 minutes 
to compute.  This grid is shown in figure 6. 
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CONCLUSION 

A new grid generation application has been presented 
which is capable of generating grids about complex 
configurations suitable for use in high Reynolds 
number viscous CFD.  The integrated nature of the 
GridEx application serves to reduce overall process 

involvement providing quality grids in minimal time.  
GridEx was designed to be extensible so as to track 
technological advances in the field of computational 
simulation.  A defining component of this design is the 
use of Dynamic Shared Object libraries to implement 
the key functionality of the tool.  As a result the tool is 
not only extensible but also customizable by the end 
user. The application has been described and 
demonstrated through the construction of complex 
unstructured tetrahedral volume grids. 
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Figure 6 – Viscous grid for DLR-F6 Geometry 

Figure 5 – DLR-F6 Geometry from 2nd DPW 
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